MSE 468 Lecture 5
FRONM HF TO DFT - PART |

Walter Kohn

Pierre C. Hohenberg

Lu Jeu Sham

The self-consistent field

e The single-particle Hartree operator is self-
consistent! It depends on the orbitals that are
the solution of all other Hartree equations

« We have n simultaneous integro-differential
equations for the n orbitals

e Solution is achieved iteratively
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What is missing?

o Correlation

e One electron only sees the average density of
another, not its instantaneous position

e Too much electrostatic repulsion on average

(- Exchange )

e The wavefunction is not anti-symmetric
(for particle exchange)

« Wrong particle statistics (no Pauli exclusion principle)
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Spin-Statistics

e All elementary particles are either fermions
(half-integer spins) or bosons (integer)

e A set of identical (indistinguishable)
fermions has a wavefunction that is
antisymmetric by exchange
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Slater determinant

e An antisymmetric wavefunction is constructed via a Slater
determinant of the individual orbitals
(instead of just a product, as in the Hartree approach)
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Pauli principle

gDa(’_/i) (Dﬁ(’_/i) wv(l_ﬁi)

L o Le,®) 9sm) e e,(0)
W(’ﬂarza---a’/},):ﬁ

(Da(’_/:n) (Dﬂ(’_/;) ¢V(’7;1)

e Changes sign when swapping rows (electrons)
(antisymmetric by exchange of identical particles)

e |Is zero if two rows are identical (Pauli principle:

we can’t have two electrons in the same quantum state)
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Hartree-Fock Equations

The Hartree-Fock equations are, again, obtained from the variational principle: we
look for the minimum of the many-electron Schrodinger equation in the class of all
wavefunctions that are written as a single Slater determinant
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Shell structure of atoms

e Self-interaction free
e Good for atomic properties

Starting point of higher-order
perturbation theory

Exchange is now in, correlation still out
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Dealing with electron spin

We not only have a position for each electron, but also a spin
variable (a, B)

When swapping electrons, we swap both positions and spins

U (Mo, mfp) = —V(rB3, M)

2-electron wavefunction with same space and spin will
vanish

\11(77104,771@) = —\D(Floé,fi&) =0

Wavefunction with same space, but different spin will not

U(ra,mpB) = -V (B3, Ta)
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Dealing with electron spin

e For each spatial orbital, there are two spin orbitals

e A system is open shell if it contains one or more
unpaired electrons

e Restricted Hartree-Fock (RHF)
Combinations of singly and doubly occupied molecular
orbitals. Doubly occupied orbitals use the same spatial
functions for electrons of both spins

e Unrestricted Hartree-Fock (UHF)
Two distinct sets of orbitals used: one for spin-up
electrons, one for spin-down electrons.
Result: effectively two densities are used, one for each
spin
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Restricted vs. unrestricted

e UHF approach is more general than RHF

e |n a variational approach, it will have lower energy
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The Dissociation of H,
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e RHF fails to describe dissociation; doubly-occupies the
same bonding orbital

e Unphysical at far separation; UHF better for bond-breaking
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What is missing

e Correlations (by definition!)

— Dynamical correlations: HF describes electrons as moving in
the average potential of the others, instantaneous
influence of electrons coming close together not taken into

account

— Static correlations: a single determinant variational class in

not good enough

e Spin contamination: even if the energy is correct
(variational, quadratic) other properties might not (e.g.
the UHF spin is an equal mixture of singlet and triplet,
not an eigenvector of the total spin operator S2?)
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What is missing

e Performs poorly for the homogenous electron gas
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FIGURE 5.5. The pair distribution functions for parallel (left) and antiparallel (right)
spins. The solid line is the Hartree-Fock approximation, while the dashed line includes

correlation.
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Faster, or better

The exchange integrals are the "hidden" cost
(fourth power).

Semi-empirical methods (ZDO, NDDO, INDO,
CNDO, MINDO): neglect certain multi-center
integrals

Configuration interaction (Cl): variational method,
linear combination of Slater determinants

Mgller-Plesset (perturbation theory)
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Configuration Interaction (Cl)

In normal Hartree Fock, the HF determinant is built from the lowest energy
single-electron states.

0 _ 295226
W = ‘(P1 @, ... CPK‘ E.g. 1s22522p
Rationale of Cl is to mix in “excited” states (e.g. exchange state i with K+1)
1
W= ‘(P1 @y e Pryy o CPK‘ E.g. 1522522p53s!t
Define new variational wave function: Issues: Many possible excitations

(combinatorial problem)

Y=cW¥,+g¥ +c¥ +..

Time consuming (scaling Né or
worse)

Variants of Cl: Full CI (all configurations, scales like N! i.e. exponential), truncated CI (CIS:
only single excitations; CID: only double excitations; CISD; CISDT; ...)
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Coupled Cluster (CC)

Exponential operator used to combine Slater determinants

W) =’ |[®g) = (1+T+T?/2+4---) D)

where T is the cluster operator, e.g. T=T1 + T2 + T3 + ..., Wwhere T; creates single
excitations, T» double excitations, ...

Leads to wave function expansions with accurate energies for small molecules

Common variants:

CCD (only double excitations, T=T>);

CCSD: single and double occupations (T=T1+T>)

CCSD(T): CCSD + perturbative treatment of triple excitations; when using a large
basis set, is very accurate but scales as N7
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Time is precious

scaling with | Time for 50 atoms
Method Econh (% error) # el & (if time for 1 atom
electrons is 1 second)
HF ~50% N3-N4 2.5 months
DFT (LDA) 15-25% N2-N3 34 hours
CCSD(T) 10-15% N7 24,000 years

Adapted from Foulkes et al., RMP 73, 33 (2001)
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Towards DFT:
density-matrix formulation
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Reduced density matrices: definition
71(1‘171‘/1):N/"'/\Ij*(r,l,rg,...,I‘N)\If<r17r2,,,,7rN)dr2---drN

N(N -1
Y2 (r1, e, 7], 1) = %/---/\Il*(rll,r’Q,...,rN)lIl(rl,rg,...,rN)drg---drN

Note! y1(r,r) = p(r) (The "trace")

Hence the name "density matrices"
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A variation principle for RDMs

E:/ [(—%V%—I—v(rﬂ) %(rg,rl)]m:rl dri+
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e As a function of the reduced density matrices, we have
many less variables.

e However: N-representability problem!
We don't know the domain - we don't know the conditions
for a function y; to be a valid RDM

(while we know e.g. conditions for w: continuous, square-integrable)
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Density-functional theory
(first observations)

e The external potential V_,, and the number N of
electrons completely define the quantum problem

e The wavefunctions are —in principle — uniquely
determined, via the Schrédinger Equation
(but we cannot compute them easily)

e All system properties follow from the wavefunctions

e The energy (and everything else) is thus a functional
of V,and N
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Can we reverse the relation?
The Thomas-Fermi approach (pre-DFT)

e Let’s try to find out an expression for the energy as a
function of the charge density
e E=Kkinetic + external + el.-el.

e Kinetic is the tricky term: second derivative (curvature)
of wave functions

( PLANE WAVE \
- 21.2
U x 6@"“'7? Kinetic energy = h2:1

BUT p = |¥|? x constant!
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Local Density Approximation

e How do we get the curvature of a wavefunction from the
charge density? Local density approximation

e We take the kinetic energy density at every point to
correspond to the kinetic energy density of the non-
interacting homogenous electron gas (exactly solvable)

[m) = prﬂ

=l

En_rlP] :[A j pi(F)dFj+ j p(F)Vex,(F)dF+% H pl
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It’s a poor-man Hartree...

e The idea of an energy functional is not justified

e |t does not include exchange effects - but Dirac
proposed to add the LDA exchange energy:

4
-C| p(F) ¥

e Fasy to compute: It scales linearly, and we deal
with 1 function of three coordinates!
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The Argon atom

Figure 6.3 Electron density for argon from various models (after Yang 1986.)

e Not too bad despite its simplicity, BUT it misses e.g.
shell structure of atoms (captured by HF instead)

e Not good for bonds and molecules, acceptable for metals
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Towards DFT

e 30+ more years before
theorems at the basis of
DFT

e 15+ more years before
actual use in materials

e Nowadays, however,
it's widely used!
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First Hohenberg-Kohn theorem

The density as the basic variable:

e external potential and the number of electrons
determine uniquely the charge density, and

e charge density (in the ground state) determines
uniquely (1:1 correspondence) the external
potential and the number of electrons

All properties can

Solve Schrédinger — — be derived
NyVe:Bt '[\Di(rl,...,’l"N)J

equation

1st HK Pick lowest-energy
theorem solution

no (,F") ~Integrate \IJO (,':»‘1’ o 7FN)

“square modulus
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Proof (ad absurdum)

e Let us consider a potential v(r) for a Hamiltonian H, with ground state |

e Let us assume (ad absurdum) that there exists a different potential v'(r)
(Hamiltonian H') with ground state ', with same charge density n(r)

e Let call E and E' the respective ground-state energies

e We consider ' as trial solution for the Hamiltonian H
and use the variational principle, we have a strict inequality:

E < (V|H|V') = (V'|H'|¢') + (V'|H — H'|¥) = F' + /n(r)[v(r) —v'(r)]dr
e Now we do the same considering U as trial solution for the Hamiltonian H":
E' < (U|H'|U) = (V|H|V) + (V|H — H|V) = F + /n(r)[v’(r) —v(r)]dr

e We now sum the two expressions and get: E+E' < E'+E, which is impossible.

Note: in the next slides | will use interchangeably n or p to indicate
the same quantity, the charge density
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The universal functional F[p]

e The ground state density determines the
potential Vex: of the Schrodinger equation, and
thus we could solve it and get the ground-state
wavefunctions

e \We can then define this functional of the
charge density:

Flp()]=(¥

e |t contains exact many-body interactions for any
system, does not explicitly depend on external
potential

T+V_ ‘P>
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Second Hohenberg-Kohn theorem

The variational principle — we have an alternative
to Schrodinger, expressed in terms of the charge
density only

E,[p(M)]= FLp(F))+ [ v,,F)p(F)dF 2 E,

(p determines its ground-state wavefunctions, that can be taken
as a trial wavefunctions in this external potential)

(P|H|¥)=(P|T +V,_, +v,,|¥)= [ pv,, + Flp]

=> |t is Ep at the minimum
If | minimise this expression to find the EXACT solution!
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Euler-Lagrange equations

The minimum is obtained when a infinitesimal perturbation does
not change the value

Lagrange multiplier
(to fix N)

6(F[n(?)] + [ v, ()n(F)dr - u( [ n(#)d - N)) =0

o F[n(r)]
on(r)

Functional derivative Still not very useful: | don't know F,

(extension of derivative to o
functionals, i.e. functions that I need to solve the Schrédinger

take a function and return equation to obtain it!
a number) m—

V(P =
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The non-interacting unique mapping

e The Kohn-Sham system: a reference system is
introduced ( )

e These electrons do not interact

e They live in an external potential

( ) such that their
ground-state charge density is IDENTICAL to
the charge density of the interacting system
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Rewrite the unknown term...

e Now: for a system of non-interacting electrons, the Slater
determinant is the EXACT many-body wavefunction

e The kinetic energy of the non interacting system is well defined

F(n(r)] =|Ti[n(r)|+ En[n(r)] + Ee[n(r)],

Hartree " r n r
electrostatic 1)n(r2) —————~drydr,.
interaction |r1 T 12| )

e This expression is DEFINING Ey; we've just rewritten F
(unknown) as the sum of two terms we know (kinetic energy of
non-interacting KS electrons, and Hartree term), plus...

e ..we moved all we don't know in an exchange-correlation (xc)
term (not only xc, it actually also includes a correction for the
kinetic energy of the interacting electrons)
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Electronic total energy

e 2 E[p()]=FIp()+ [v,,@)pF)dr > E,

|

=1
Bl = Y —5 [ #w)V*e) dr + Baln(o)] +

}

Kohn-Sham ‘I‘Ea:c[n(r)] 4+ /t)emt(l‘)’n(l‘) dr

wavefunctions
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The Kohn-Sham equations

e Rewrite as an "eigenvector" equation for the KS wave functions:
(it's a set of N independent single-particle Schrodinger equations)

_%VZ +vg(r) + vge(r) + vemt(l‘)] Pi(r) = Hys i(r) = & i(r)

n(r')
va(r) = / Ir — r/| ae’, Vze(r) = dn(r)

N
n(r) = _Z [ (r) |2
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